

Journal of Power Sources 68 (1997) 558-560

Studies of LiNiO₂ in lithium-ion batteries

S.P. Sheu^{a.*}, I.C. Shih^a, C.Y. Yao^a, J.M. Chen^b, W.M. Hurng^a

^a Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC ^b Institute of Materials Science and Engineering, Tsing Hua University, Hsinchu, Taiwan, ROC

Accepted 3 October 1996

Abstract

Lithium nickel oxide, LiNiO₂, with different physical properties including crystalline phase, CV curve and particle-size distribution were characterized. LiNiO₂ with spherical agglomerates were constructed by $\sim 0.1 \,\mu$ m fine particles and their cycling stability showed to depend on the particle-size distribution when compared at different end-voltage and cycling rates. © 1997 Published by Elsevier Science S.A.

Keywords: Lithium-10n batteries; Nickel; Cycling behaviour

1. Introduction

Lithium-ion secondary batteries with lithium metal oxides and carbon as the cathodes and anodes are developed as highenergy/power, long cycle-life cells to replace the Ni–Cd cell [1]. Lithium metal oxides, LiMO₂, with layered structures are the most promising cathode materials for secondary lithium batteries. Nowadays, LiMnO₂ is at the stage of evaluation while LiCoO₂ has been commercialized for years, and LiNiO₂ becomes a promising candidate for LiCoO₂ because it has the benefits of higher specific capacity and lower price [2]. In this study, the physical properties of two LiNiO₂ particle sizes were characterized, their performance at different charge endvoltage were compared by the charge and discharge recycling process, and the electrochemical behaviors are examined by cyclic voltammetry.

2. Experimental

Two particle sizes of LiNiO₂, LN-A and LN-B (commercial products), were used as the cathode materials in this work. The compositions were determined to be both $Li_{0.99}NiO_2$ by inductively coupled plasma spectroscopy (ICP). Powder X-ray diffraction (XRD) diagrams were recorded with 2θ range from 15° to 80° with a step scan of 0.02° by using Cu K α radiation. The cathodes were prepared by mixing LiNiO₂, acetylene black (AB), polyvinylidene fluoride (PVDF) and then spread onto an aluminum foil to form the positive electrode. The LiNiO_2 electrochemical behavior was examined by a coin cell. The electrolyte was 1 M LiPF₆ in EC/DEC. The cyclic voltammetry (CV) measurements were carried out in the potential range from 3.0 to 4.5 V versus Li/Li⁺ reference electrode under a scan rate of 0.1 mV/s.

3. Results and discussion

Particle-size distribution analyses characterized LN-A and LN-B as 5–10 μ m and 10–20 μ m, respectively. Scanning electron microscopy (SEM) graphs revealed that both the LN-A and the LN-B LiNiO₂ materials were spherical agglomerates which were constructed by ~0.1 μ m fine particles and also reported by Broussely et al. [3]. The XRD patterns of different particle sizes of LiNiO₂ are shown in Fig. 1. The diffraction pattern of LN-A (5–10 μ m) LiNiO₂ resembled that of LN-B (10–20 μ m) LiNiO₂ except that the integrated intensity ratio of *I*(003)/*I*(104) of LN-A was larger than LN-B (LN-A: 1.13, LN-B: 0.99) indicating a better electrochemical reactivity [4].

The electrochemical performance of the two LiNiO_2 positive electrodes are compared by CV method in Fig. 2. In general, the CV curves are similar. However, an oxidation peak at 4.25 V and a reduction peak at 4.0 V were obviously more pronounced for LN-B LiNiO₂ (noted by arrows). According to literature, these CV peaks associated, most probably, with a third hexagonal phase, H₃, or/and an irreversible phase when charge/discharge at voltage larger than 4.15 V [5].

^{*} Corresponding author.

Fig. 1 XRD patterns of (a) 5 μ m LN-A, and (b) 10 μ m LN-B LiNiO₂ particles.

Fig. 2. CV curves of $L_1N_1O_2$ with particle size of (a) 10 μ m LN-B, and (b) 5 μ m LN-A.

The LiNiO₂ particle-size effect was examined by charge/ discharge recycling process under two C rates as shown in Fig. 3 (upper). Concerning the initial specific capacity, it is reasonable that the two electrodes gave similar values (0.5 mA/cm²: 144 mAh/g, 2.5 mA/cm²: 127 mAh/g). At low current density (0.5 mA/cm²), the cycle stability of the LN-A electrode (5–10 μ m) was comparable with that of LN-B (10–20 μ m). But at higher current density (2.5 mA/cm²) the one with the 5–10 μ m particle-size distribution (LN-A) behaved better as can be seen from Fig. 3 (upper). This might be interpreted by the better electrochemical reactivity of the

Fig. 3. (Upper) LiNiO₂ particle-size effect and (bottom) charge end-voltage effect which cycled at 2.5 mA/cm^2 current density on cycle stability.

5 μm LiNiO_2 (LN-A) as suggested by the X-ray results in the previous section.

The LN-A and LN-B LiNiO₂ were also tested by a recycling process at higher charge end-voltage, 4.2 V, which is almost the upper working voltage limit of LiNiO₂ cathodic material. Higher initial specific capacities of about 150 mAh/ g could be obtained. Fig. 3 (bottom) shows the normalized cycle curves for the purpose of comparison. It is apparent that higher charge end-voltage led to dramatically poorer cycle stability of both particle sizes of LiNiO₂ though the 5 μ m particle size still behaved better than the 10 μ m particle size LiNiO₂. The poorer cycle stability might be caused by the formation of the irreversible phase at higher voltage; further investigation is in progress.

4. Conclusions

LiNiO₂ materials of spherical agglomerates were constructed by ~ 0.1 μ m fine particles as characterized by SEM graphs. The cell performance of LiNiO₂ depends on the agglomerates size with smaller agglomerates giving better cycle-life stability when the 4.1 or 4.2 V end-voltage was used. The poorer cycle stability might be interpreted by the small portion of irreversible phase co-crystallined in the electroactive LiNiO₂ product.

References

- [1] R. Hue, H. Huang, G. Li and L. Chen, J. Power Sources. 55 (1995) 111.
- [2] S. Megahed and W. Ebner, J. Power Sources, 54 (1995) 155.
- [3] M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier and J.P. Pérès, J. Power Source, 54 (1995) 109
- [4] T. Ohzuku, A. Ueda and M. Nagayama, J. Electrochem. Soc., 140 (1993) 1862.
- [5] W. Ebner, D. Fouchard and L. Xie, Solid State Ionics, 69 (1994) 238.